
HCVKC6 Valve

Application

HCVKC6 steam conditioning valve combines pressure and temperature control in a single valve. It is commonly used as turbine start or discharge valve.

Description

HCVKC6 is an angle valve. The water is delivered by a set of highly efficient nozzles assembled in spray chamber under the valve's seat. Forged body of the valve has equal walls' thickness (gauge), what reduces the thermal stresses during valve's warming up and cooling. Basically, the valve consists of: body, self-sealing inner bonnet integrated with cage, main plug (perforated or piston-type, pressure balanced by inner plugso called pilot plug), and slip-in seat (pressed by screw plug). The cage drives the main plug. The mentioned seat has the perforated throttling device on its outlet. At the very beginning of the valve's stroke the pilot plug works. It controls small flows and reduces the pressure differences which affect the main plug. The reduced dynamic forces acting on main plug might permit choosing a smaller actuator. If the pilot plug fully opens, the main plug starts moving. Piston-type one opens the vents of active cage. In case of perforated plug, only its perforation is responsible for pressure reduction; the cage does not. HCVKC6 valve works with media flow directed over the plug. A medium undergoes multistep expansion. Firstly, the expansion occurs on plug itself (active stage). Next two steps (of passive nature) occur at seat's perforation and on throttling plate. Valve's construction allows to increase the number of expansion's steps (additional appliances are assembled on the outlet connection pipe). Any control of coolant's flow demands an implementation of additional injection valve.

Technical data

		inlet		outlet		connection pipe of injected water
Nominal diameter		DN50÷DN300		according to patron's demand		DN15÷DN40
Nominal pressure		PN40÷PN400		PN16÷PN400		PN40÷PN400
Connections		welding ready			welding ready	
Flow coefficient Kvs		40÷1300 m³/h				
Body	1.0460 (P250GH) 1.5415 (16Mo3)		1.7335 (13CrMo4-5) 1.7380 (10CrMo9-10)		1.7715 (14MoV6-3) 1.4903 (X10CrMoVNb9-1)	1.4901 (X10CrWMoVNb9-2)
Plug	1.4541(X6CrNiTi18-10)		1.4057(X17CrNi16-	-2)	1.4125 (X105CrMo17)	
Seat	1.4541(X6CrNiTi18-10)		1.4057(X17CrNi16-	-2)	1.4125 (X105CrMo17)	
Stem	1.4057 (X17CrNi16-2)		1.4923 (X22CrMo\	/12-2)		
Injection nozzles	1.4305 (X8CrNiS18-9)		1.4571 (X6CrNiMo	Ti17-12-2)		
Hardening of the inner parts		stelliting; nitriding; hardening				
Rangeability		20:1				
Leakage class		metal/metal sealing-IV (standard); V (improved)				
Body's gland		trapezoid, graphite				
Seal bushing		graphite				

